[1] Kohler G, Milstein C.Continuous cultures of fused cells secreting antibody of predefined specificity[J]. Nature, 1975, 256(5517): 495-497. [2] Filpula D.Antibody engineering and modification technologies[J]. Biomol Eng, 2007, 24(2): 201-215. [3] Kintz P, Bundeli P, Brenneisen R, et al.Dose-concentration relationships in hair from subjects in a controlled heroin-maintenance program[J]. J Anal Toxicol, 1998, 22(3): 231-236. [4] Parmley SF, Smith GP.Filamentous fusion phage cloning vectors for the study of epitopes and design of vaccines[J]. Adv Exp Med Biol, 1989, 251: 215-218. [5] Justyna B, Ireneusz C, Andrzej G.Phage display--a powerful technique for immunotherapy: 1. Introduction and potential of therapeutic applications[J]. Hum Vaccin Immunother, 2012, 8(12):1817-1828. [6] Jun O, Nobuko O, Ritsuko K-K, et al.Monoclonal antibodies in man that neutralized H3N2 influenza viruses were classified into three groups with distinct strain specificity: 1968-1973, 1977-1993 and 1997-2003[J]. Virology, 2010, 397(2):322-330. [7] Wen WH, Qin WJ, Gao H, et al.An hepatitis B virus surface antigen specific single chain of variable fragment derived from a natural immune antigen binding fragment phage display library is specifically internalized by HepG2.2.15 cells[J]. J Viral Hepat, 2007, 14(7): 512-519. [8] Mattheakis LC, Dias JM, Dower WJ.Cell-free synthesis of peptide libraries displayed on polysomes[J]. Methods Enzymol, 1996, 267: 195-207. [9] Niu X, Zhao L, Qu L, et al.Convalescent patient-derived monoclonal antibodies targeting different epitopes of E protein confer protection against Zika virus in a neonatal mouse model[J]. Emerg Microbes Infect, 2019, 8(1): 749-759. [10] Bornholdt ZA, Turner HL, Murin CD, et al.Isolation of potent neutralizing antibodies from a survivor of the 2014 Ebola virus outbreak[J]. Science, 2016, 351(6277): 1078-1083. [11] Falkowska E, Ramos A, Feng Y, et al.PGV04, an HIV-1 gp120 CD4 binding site antibody, is broad and potent in neutralization but does not induce conformational changes characteristic of CD4[J]. J Virol, 2012, 86(8): 4394-4403. [12] Felix H, Dc L,Qs R.Memory B cell activation, broad anti-influenza antibodies, and bystander activation revealed by single-cell transcriptomics[J]. Cell Rep, 2020, 30(3):905-913. [13] Cao Y, Su B, Guo X, et al.Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells[J]. Cell, 2020, 182(1): 73-84. [14] Corti D, Voss J, Gamblin SJ, et al.A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins[J]. Science, 2011, 333(6044): 850-856. [15] 罗佳. 利用单细胞PCR从免疫后中国猕猴筛选H7N9高亲和力中和抗体[D]. 广州:华南农业大学,2016. [16] Wang J, Chen Z, Bao L, et al.Characterization of two human monoclonal antibodies neutralizing influenza a H7N9 viruses[J]. J Virol, 2015, 89(17): 9115-9118. [17] Thornburg NJ, Zhang H, Bangaru S, et al.H7N9 influenza virus neutralizing antibodies that possess few somatic mutations[J]. J Clin Invest, 2016, 126(4): 1482-1494. [18] Qiu Y, Stegalkina S, Zhang J, et al.Mapping of a novel H3-specific broadly neutralizing monoclonal antibody targeting the hemagglutinin globular head isolated from an elite influenza virus-immunized donor exhibiting serological breadth[J]. J Virol, 2020, 94(6). e01035-19. [19] Wang X, Zhou P, Wu M, et al.Adenovirus delivery of encoded monoclonal antibody protects against different types of influenza virus infection[J]. NPJ Vaccines, 2020, 5(1):57 . [20] Qiu X, Wong G, Audet J, et al.Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp[J]. Nature, 2014, 514(7520): 47-53. [21] Corti D, Misasi J, Mulangu S, et al.Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody[J]. Science, 2016, 351(6279): 1339-1342. [22] Wec AZ, Herbert AS, Murin CD, et al.Antibodies from a human survivor define sites of vulnerability for broad protection against Ebolaviruses[J]. Cell, 2017, 169(5): 878-890. [23] Wec AZ, Bornholdt ZA, He S, et al.Development of a human antibody cocktail that deploys multiple functions to confer pan-Ebolavirus protection[J]. Cell Host Microbe, 2019, 25(1): 39-48. [24] Priyamvada L, Cho A, Onlamoon N, et al.B cell responses during secondary Dengue virus infection are dominated by highly cross-reactive, memory-derived plasmablasts[J]. J Virol, 2016, 90(12): 5574-5585. [25] Cox KS, Tang A, Chen Z, et al.Rapid isolation of dengue-neutralizing antibodies from single cell-sorted human antigen-specific memory B-cell cultures[J]. MAbs, 2016, 8(1): 129-140. [26] Nivarthi UK, Kose N, Sapparapu G, et al.Mapping the human memory B cell and serum neutralizing antibody responses to Dengue virus serotype 4 infection and vaccination[J]. J Virol, 2017, 91(5):e02041-16. [27] Injampa S, Muenngern N, Pipattanaboon C, et al.Generation and characterization of cross neutralizing human monoclonal antibody against 4 serotypes of dengue virus without enhancing activity[J]. Peer J, 2017, 5: e4021. [28] Raftery LJ, Howard CB, Grewal YS, et al.Retooling phage display with electrohydrodynamic nanomixing and nanopore sequencing[J]. Lab Chip, 2019, 19(24): 4083-4092. [29] Magnani DM, Rogers TF, Beutler N, et al. Neutralizing human monoclonal antibodies prevent Zika virus infection in macaques[J]. Sci Transl Med, 2017, 9(410) :eaan8184. [30] Kim SI, Kim S, Shim JM, et al.Neutralization of Zika virus by E protein domain III-Specific human monoclonal antibody[J]. Biochem Biophys Res Commun, 2021, 545: 33-39. [31] Graham SD, Tu HA, McElvany BD, et al. A novel antigenic site spanning domains I and III of the Zika virus envelope glycoprotein is the target of strongly neutralizing human monoclonal antibodies[J]. J Virol, 2021, 95(9):e02423-20. [32] Collins MH, Tu HA, Gimblet-Ochieng C, et al.Human antibody response to Zika targets type-specific quaternary structure epitopes[J]. JCI Insight, 2019, 4(8):e124588. [33] Wu Y, Li C, Xia S, et al.Identification of human single-domain antibodies against SARS-CoV-2[J]. Cell Host Microbe, 2020, 27(6): 891-898. [34] Lv Z, Deng YQ, Ye Q, et al.Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody[J]. Science, 2020, 369(6510): 1505-1509. [35] Wan J, Xing S, Ding L, et al.Human-IgG-neutralizing monoclonal antibodies block the SARS-CoV-2 infection[J]. Cell Rep, 2020, 32(3): 107918. [36] Shanmugaraj B, Rattanapisit K, Manopwisedjaroen S, et al.Monoclonal antibodies B38 and H4 produced in nicotiana benthamiana neutralize SARS-CoV-2 in vitro[J]. Front Plant Sci, 2020, 27(11): 589995. [37] Kreer C, Zehner M, Weber T, et al.Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients[J]. Cell, 2020, 182(4): 843-854. [38] Kang S, Yang M, He S, et al.A SARS-CoV-2 antibody curbs viral nucleocapsid protein-induced complement hyperactivation[J]. Nat Commun, 2021, 12(1): 2697. [39] Rogers TF, Zhao F, Huang D, et al.Isolation of potent SARS-CoV-2 neutralizing antibodies and protection from disease in a small animal model[J]. Science, 2020, 369(6506): 956-963. [40] Wu Y, Wang F, Shen C, et al.A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2[J]. Science, 2020, 368(6496): 1274-1278. [41] Shi R, Shan C, Duan X, et al.A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2[J]. Nature, 2020, 584(7819): 120-124. [42] Hafeez U, Gan HK, Scott AM.Monoclonal antibodies as immunomodulatory therapy against cancer and autoimmune diseases[J]. Curr Opin Pharmacol, 2018, 41: 114-121. [43] Schütz F, Stefanovic S, Mayer L, et al.PD-1/PD-L1 pathway in breast cancer[J]. Oncol Res Treat, 2017, 40(5): 294-297. |