华南预防医学 ›› 2025, Vol. 51 ›› Issue (5): 508-513.doi: 10.12183/j.scjpm.2025.0508

• 论著 • 上一篇    下一篇

基于随机生存森林和Cox回归的高血压肾病患者生存预测模型研究

吴树法1,2,3, 杨慧1, 徐远飞1, 唐伟1, 于海兵2,4,5, 龚春梅1   

  1. 1.深圳市慢性病防治中心,广东 深圳 518020;
    2.广东医科大学公共卫生学院;
    3.东莞市慢性病防治重点实验室;
    4.广东医科大学附属东莞第一医院;
    5.省部共建中亚高发病成因与防治国家重点实验室
  • 收稿日期:2024-09-15 发布日期:2025-06-27
  • 通讯作者: 龚春梅,E-mail:spring417@126.com;于海兵,E-mail:hby616688@gdmu.edu.cn
  • 作者简介:吴树法(1999—),男,在读硕士研究生,主要研究方向:慢性非传染性疾病
  • 基金资助:
    省部共建中亚高发病成因与防治国家重点实验室-广东工作站联合基金项目(SKL-HIDCA-2024-GD7B);广东省基础与应用基础研究基金自然科学基金项目(2022A1515012407);东莞市社会发展科技(重点)项目(20221800905642);广东省研究生教育创新计划项目(研究生示范课程建设项目)(2024SFKC_047);广东医科大学本科教学质量和教学改革工程项目(专项人才培养计划)(1JG22125)

Survival prediction model of hypertensive nephropathy patients based on random survival forest and cox regression

WU Shufa1,2,3, YANG Hui1, XU Yuanfei1, TANG Wei1, YU Haibing2,4,5, GONG Chunmei1   

  1. 1. Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China;
    2. School of Public Health, Guangdong Medical University;
    3. Dongguan Key Laboratory of Chronic Disease Prevention and Treatment;
    4. The First Dongguan Affiliated Hospital of Guangdong Medical University;
    5. State Key Laboratory of High Disease Pathogenesis and Prevention in Central Asia
  • Received:2024-09-15 Published:2025-06-27

摘要: 目的 构建基于随机生存森林(random survival forests,RSF)和Cox回归的高血压肾病患者生存预测模型。方法 研究数据来自多参数重症智能监护数据库-IV(MIMIC-IV)V3.0,以高血压肾病患者是否发生院内死亡及在接受治疗后生存时间为结局变量,以人口统计学、实验室指标、生命体征、合并症、评分指标以及急性肾损伤(acute kidney injury,AKI)、连续性肾脏替代治疗(continuous renal replacement therapy,CRRT)等为预测变量,将高血压肾病患者按7:3的比例随机划分成训练集和验证集,在训练集中提取重要变量构建Cox回归模型和RSF模型,在训练集和测试集采用一致性指数和时间依赖性受试者工作特征曲线(time dependent ROC,tROC)和曲线下面积(area under the curve,AUC)评价模型的准确性和区分度。结果 共纳入7 369例高血压肾病患者,因高血压肾病导致死亡共3 543例(48.1%)。在训练集中,Cox模型1、5、10年的AUC分别为0.783 6、0.770 7和0.760 7,一致性指数为0.719 0(95% CI:0.709 2~0.728 8);RSF模型1、5、10年的AUC分别为0.794 7、0.783 0和0.769 5,一致性指数为0.720 0(95% CI:0.710 2~0.729 8)。在验证集中,Cox模型1、5、10年的AUC分别为0.794 7、0.783 0和0.769 5,一致性指数为0.731 0(95% CI:0.717 3~0.744 7);RSF模型1、5、10年的AUC分别为0.794 7、0.783 0和0.769 5,一致性指数为0.720 0(95% CI:0.710 2~0.729 8)。结论 基于RSF和Cox回归构建的高血压肾病患者生存预测模型具有较好的预测效果,可为临床决策提供参考。

关键词: 高血压肾病, Cox回归, 随机生存森林, 预测模型

Abstract: Objective To develop a survival prediction model for hypertensive nephropathy patients based on Random Survival Forests (RSF) and Cox regression. Methods Data were collected from MIMIC-IV V3.0, with in-hospital mortality and post-treatment survival time as outcome variables. Predictor variables included demographics, laboratory indicators, vital signs, comorbidities, scoring metrics, acute kidney injury (AKI), and continuous renal replacement therapy (CRRT). Patients were randomly divided into training (70%) and validation (30%) sets. Important variables were extracted from the training set to construct Cox regression and RSF models. Model accuracy and discrimination were evaluated using concordance index, time-dependent ROC curves (tROC), and AUC in both training and validation sets. Results A total of 7 369 hypertensive nephropathy patients were included, with 3 543 deaths (48.1%). In the training set, the Cox model achieved AUC values of 0.783 6, 0.770 7, and 0.760 7 at 1, 5, and 10 years, respectively, with a concordance index of 0.719 0 (95% CI: 0.709 2-0.728 8). The RSF model achieved AUC values of 0.794 7, 0.783 0, and 0.769 5 at 1, 5, and 10 years, respectively, with a concordance index of 0.720 0 (95% CI: 0.710 2-0.729 8). In the validation set, the Cox model achieved AUC values of 0.794 7, 0.783 0, and 0.769 5 at 1, 5, and 10 years, respectively, with a concordance index of 0.731 0 (95% CI: 0.717 3-0.744 7). The RSF model achieved similar AUC values and concordance index as in the training set. Conclusion The survival prediction model for hypertensive nephropathy patients based on RSF and Cox regression demonstrates good predictive performance and can serve as a reference for clinical decision-making.

Key words: Hypertensive nephropathy, Cox risk proportional regression, Random survival forest, Prediction model

中图分类号: 

  • R195