华南预防医学 ›› 2015, Vol. 41 ›› Issue (3): 255-259.doi: 10.13217/j.scjpm.2015.0255

• 论著 • 上一篇    下一篇

ARIMA模型在流行性腮腺炎发病率预测中的应用

许阳婷   

  1. 南京市疾病预防控制中心,江苏 南京 210003
  • 出版日期:2015-06-15 发布日期:2015-06-23
  • 作者简介:许阳婷(1965—),女,大学本科,副主任医师,主要从事疾病预防控制工作

Application of ARIMA model in forecasting the incidence of mumps

XU Yang-ting   

  1. Nanjing Center for Disease Control and Prevention,Nanjing 210003, China
  • Online:2015-06-15 Published:2015-06-23

摘要: 目的探讨求和自回归移动平均(ARIMA)模型在流行性腮腺炎发病预测中的应用,验证分析模型的可行性与适用性。方法对南京市2004年1月至2012年12月流行性腮腺炎发病率资料进行ARIMA模型拟合,用建立的模型对2013年1—12月发病率进行拟合检测,之后对2014年各月发病率进行预测评价。结果2004—2013年流行性腮腺炎累计报告病例14 871例,年均发病率为21.78 /10 万,每年各月流行性腮腺炎发病率始终围绕在1.85/10万附近波动。建立ARIMA(1,0,0)(2,1,0)12模型为最优模型。模型残差序列为白噪声。除常数项外,模型各参数均有统计学意义。模型的平均绝对百分误差为29.63%, R2为0.76。用建立的模型拟合2013年1—12月发病率,均在95%可信区域内,符合实际发病率变动趋势,验证了该模型的可行性。用该模型对2014年流行性腮腺炎进行预测,年发病率为1.48/10万,发病高峰期在4、5、6月,月发病率分别为2.33/10万、2.72/10万、2.52/10万。结论ARIMA 模型可用于拟合流行性腮腺炎发病率在时间序列上的变化趋势,可进行动态分析和短期预测。 

Abstract: Objective To explore the application of ARIMA model in the prediction of the incidence of mumps and verify the feasibility and applicability of the model.Methods Incidence data of mumps in Nanjing from January 2004 to December 2012 were fitted with ARIMA model using SPSS 18.0 statistical software. The incidence rate from January to December 2013 was verified by the established model, and then, monthly incidence rates in 2014 were predicted and evaluated. Results A total of 14 871 mump cases were reported from 2004 to 2013, with average annual incidence rate of 21.78 /100 000. Each year the monthly incidence rates were fluctuated around 1.85/100 000. ARIMA (1,0,0) (2,1,0)12 model was set up as the optimal one. The model residual sequence was white noise. The parameters of the model were statistically significant except the constant term. MAPE was 29.63% and R2, 0.76. Monthly incidence rates from January to December 2013 fitting with the model were all within the 95% confidence interval, consistent with the change trend of the actual incidence, which verified the availability of the model. Predicted by the model, the annual incidence rate of mumps in 2014 was 1.48/100 000 and the peak months of incidence were April (incidence rate: 2.33/100 000), May (2.72/100 000), and June (2.52/100 000). Conclusion ARIMA model can be used to fit mumps incidence trends in time series, and for dynamic analysis and short term prediction of the incidence of mumps.

中图分类号: 

  • R181.2