[1] Anderson RM, Vegvari C, Truscott J, et al.Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination[J].Lancet,2020, 396(10263):1614-1616. [2] Dai L, Gao GF.Viral targets for vaccines against COVID-19[J].Nat Rev Immunol,2020,21(2):73-82. [3] Xu XT, Chen P, Wang JF, et al.Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission[J].Sci China Life Sci,2020,63(3):457-460. [4] Gavor E, Choong YK, Er SY, et al.Structural basis of SARS-CoV-2 and SARS-CoV antibody interactions[J].Trends Immunol,2020,41(11):1006-1022. [5] Wu Y, Wang FR, Shen CG, et al.A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2[J].Science,2020, 368(6496):1274-1278. [6] Cao YL, Su B, Guo XH, et al.Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients' B cells[J].Cell,2020,182(1):73-84. [7] Shi R, Shan C, Duan XM, et al.A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2[J].Nature 2020,584(7819):120-124. [8] Ju B, Zhang Q, Ge JW, et al.Human neutralizing antibodies elicited by SARS-CoV-2 infection[J].Nature,2020,584(7819):115-119. [9] Wan JK, Xing SH, Ding LF, et al.Human-IgG-neutralizing monoclonal antibodies block the SARS-CoV-2 infection[J].Cell Rep,2020,32(3):107918. [10] Wec AZ, Wrapp D, Herbert AS, et al.Broad neutralization of SARS-related viruses by human monoclonal antibodies[J].Science,2020,369(6504):731-736. [11] Hansen J, Baum A, Pascal KE, et al.Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail[J]. Science,2020,369(6506):1010-1014. [12] Grifoni A, Weiskopf D, Ramirez SI, et al.Targets of T cell responses to SARS-CoV-2 Coronavirus in humans with COVID-19 disease and unexposed individuals[J].Cell,2020,181(7):1489-1501. [13] Pallesen J, Wang NS, Corbett KS, et al.Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen[J].P Natl Acad Sci USA,2017,114(35):E7348-E7357. [14] Corbett KS, Flynn B, Foulds KE, et al.Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates[J].New Engl J Med,2020,383(16):1544-1555. [15] Walsh EE, Frenck R, Falsey AR, et al.RNA-Based COVID-19 vaccine BNT162b2 selected for a pivotal efficacy study[J].medRxiv,2020. [16] Tostanoski LH, Wegmann F, Martinot AJ, et al.Ad26 vaccine protects against SARS-CoV-2 severe clinical disease in hamsters[J].Nat Med,2020,26(11):1694-1700. [17] Bangaru S, Ozorowski G, Turner HL, et al.Structural analysis of full-length SARS-CoV-2 spike protein from an advanced vaccine candidate[J].Science,2020, 370(6520):1089-1094. [18] Bos R, Rutten L, van der Lubbe JEM, et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 spike immunogen induces potent humoral and cellular immune responses[J].NPJ Vaccines,2020,5:91. [19] Richmond P, Hatchuel L, Dong M, et al.Safety and immunogenicity of S-Trimer (SCB-2019), a protein subunit vaccine candidate for COVID-19 in healthy adults: A phase 1, randomised, double-blind, placebo-controlled trial[J]. Lancet,2021,397(10275):682-694. [20] Chi XY, Yan RH, Zhang J, et al.A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2[J].Science,2020, 369(6504):650-655. [21] Yang J, Wang W, Chen Z, et al.A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity[J].Nature,2020,586(7830):572-577. [22] Zhou MH, Xu DP, Li XJ, et al.Screening and identification of severe acute respiratory syndrome-associated coronavirus-specific CTL epitopes[J].J Immunol,2006,177(4):2138-2145. [23] Zhang NN, Li XF, Deng YQ, et al.A Thermostable mRNA Vaccine against COVID-19[J].Cell,2020,182(5):1271-1283. [24] Walls AC, Fiala B, Schafer A, et al.Elicitation of potent neutralizing antibody responses by designed protein nanoparticle vaccines for SARS-CoV-2[J].Cell,2020,183(5):1367-1382. [25] Sahin U, Muik A, Derhovanessian E, et al.COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses[J].Nature,2020,586(7830):594-599. [26] Sun J, Zhuang Z, Zheng J, et al.Generation of a broadly useful model for COVID-19 pathogenesis,vaccination, and treatment[J].Cell,2020,182(3):734-743. [27] Yasui F, Kai C, Kitabatake M, et al.Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV[J].J Immunol,2008,181(9):6337-6348. [28] Wang H, Zhang YT, Huang BY, et al.Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2[J]. Cell,2020,182(3):713-721. [29] Polack FP, Thomas SJ, Kitchin N, et al.Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine[J].N Engl J Med,2020,383(27):2603-2615. [30] Xia S, Duan K, Zhang Y, et al.Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes: Interim analysis of 2 randomized clinical trials[J].JAMA,2020,324(10):951-960. [31] Gao Q, Bao LL, Mao HY, et al.Development of an inactivated vaccine candidate for SARS-CoV-2[J].Science 2020,369(6499):77-81. [32] Logunov DY, Dolzhikova IV, Zubkova OV, et al.Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: Two open, non-randomised phase 1/2 studies from Russia[J]. Lancet,2020,396(10255):887-897. [33] Baden LR, El Sahly HM, Essink B, et al.Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine[J].N Engl J Med,2020,384(5):403-416. [34] Silva-Cayetano A, Foster WS, Innocentin S, et al.A Booster dose enhances immunogenicity of the COVID-19 vaccine candidate ChAdOx1 nCoV-19 in aged mice[J].Med (N Y),2021,2(3):243-262. [35] Ella R, Vadrevu KM, Jogdand H, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: A double-blind, randomised, phase 1 trial[J].Lancet Infect Dis,2021,S1473-3099(20):30942-30947. [36] Zhang Y, Zeng G, Pan H, et al.Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial[J]. Lancet Infect Dis,2021,21(2):181-192. [37] Balakrishnan VS.The arrival of sputnik V[J].Lancet Infect Dis,2020,20(10):1128. [38] Voysey M, Clemens SAC, Madhi SA, et al.Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK[J]. Lancet,2021,397(10269):99-111. [39] Mercado NB, Zahn R, Wegmann F, et al.Single-shot Ad26 vaccine protects against SARS-CoV-2 in rhesus macaques[J].Nature,2020,586(7830):583-588. [40] Wang P, Zheng M, Lau SY, et al.Generation of DelNS1 influenza viruses: A strategy for optimizing live attenuated influenza vaccines[J].mBio,2019,10(5):e02180-19. [41] Dai L, Zheng T, Xu K, et al.A universal design of betacoronavirus vaccines against COVID-19, MERS, and SARS[J].Cell,2020,182(3):722-33 e11. [42] Keech C, Albert G, Cho I, et al.Phase 1-2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine[J].N Engl J Med,2020,383(24):2320-2332. [43] Guebre-Xabier M, Patel N, Tian JH, et al.NVX-CoV2373 vaccine protects cynomolgus macaque upper and lower airways against SARS-CoV-2 challenge[J]. Vaccine,2020,38(50):7892-7896. [44] Smith TRF, Patel A, Ramos S, et al.Immunogenicity of a DNA vaccine candidate for COVID-19[J].Nat Commun,2020,11(1):2601. [45] Zhang NN, Li XF, Deng YQ, et al.A thermostable mRNA vaccine against COVID-19[J].Cell,2020,182(5):1271-83 e16. [46] Zhao J, Zhao S, Ou J, et al.COVID-19: Coronavirus vaccine development updates[J].Front Immunol,2020,11:602256. [47] Li Q, Wu J, Nie J, et al.The impact of mutations in SARS-CoV-2 spike on viral infectivity and antigenicity[J].Cell,2020,182(5):1284-1294 . [48] Guruprasad L.Human SARS CoV-2 spike protein mutations[J].Proteins,2021,89(5):59-576. [49] Thomson EC, Rosen LE, Shepherd JG, et al.Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity[J]. Cell,2021,184(5):1171-1187. [50] Lee WS, Wheatley AK, Kent SJ, et al.Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies[J].Nat Microbiol,2020,5(10):1185-1191. [51] Rey FA, Stiasny K, Vaney MC, et al.The bright and the dark side of human antibody responses to flaviviruses: Lessons for vaccine design[J].Embo Rep,2018,19(2):206-224. [52] 国家卫生健康委办公厅,国家中医药管理局办公室.关于印发新型冠状病毒肺炎诊疗方案(试行第七版)的通知[EB/OL].(2020-03-04)[ 2021-03-01]. http://www.nhc.gov.cn/yzygj/s7653p/202003/46c9294a7dfe4cef80dc7f5912eb1989.shtml?security_session_verify=4aec1a086c7cda51ef74e57abb58d3de. [53] Zhang Y, Zeng G, Pan H, et al.Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: A randomised, double-blind, placebo-controlled, phase 1/2 clinical trial[J]. Lancet Infect Dis,2021,21(2):181-192. [54] Xia S, Zhang Y, Wang Y, et al.Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: A randomised, double-blind, placebo-controlled, phase 1/2 trial[J].Lancet Infect Dis,2021,21(1):39-51. [55] Che Y, Liu X, Pu Y, et al. Randomized, double-blinded and placebo-controlled phase II trial of an inactivated SARS-CoV-2 vaccine in healthy adults[J]. Clin Infect Dis,2020, 9:ciaa1703. [56] Mohandas S, Yadav PD, Shete-Aich A, et al.Immunogenicity and protective efficacy of BBV152, whole virion inactivated SARS- CoV-2 vaccine candidates in the Syrian hamster model[J].iScience,2021,24(2):102054. [57] van Doremalen N, Lambe T, Spencer A, et al. ChAdOx1 nCoV-19 vaccine prevents SARS-CoV-2 pneumonia in rhesus macaques[J].Nature,2020,586(7830):578-582. [58] Voysey M, Clemens SAC, Madhi SA, et al.Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK[J]. Lancet,2021,397(10269):99-111. [59] Zhu FC, Guan XH, Li YH, et al.Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: A randomised, double-blind, placebo-controlled, phase 2 trial[J]. Lancet,2020,396(10249):479-488. [60] Zhu FC, Li YH, Guan XH, et al.Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: A dose-escalation, open-label, non-randomised, first-in-human trial[J].Lancet,2020, 395(10240):1845-1854. [61] Corbett KS, Flynn B, Foulds KE, et al.Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates[J].N Engl J Med,2020,383(16):1544-1555. [62] Anderson EJ, Rouphael NG, Widge AT, et al.Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults[J].N Engl J Med,2020,383(25):2427-2438. [63] Mulligan MJ, Lyke KE, Kitchin N, et al.Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults[J].Nature,2020,586(7830):589-593. [64] McKay PF, Hu K, Blakney AK, et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice[J].Nat Commun,2020,11(1):3523. |