[1] Cui H, Che G, De Jong MCM, et al.The PB1 gene from H9N2 avian influenza virus showed high compatibility and increased mutation rate after reassorting with a human H1N1 influenza virus[J].Virol J, 2022, 19(1): 20. [2] Chen R, Holmes EC.Avian influenza virus exhibits rapid evolutionary dynamics[J].Mol Biol Evol,2006,23(12): 2336-2341. [3] Mehle A, Dugan VG, Taubenberger JK, et al.Reassortment and mutation of the avian influenza virus polymerase PA subunit overcome species barriers[J].J Virol,2012,86(3): 1750-1757. [4] Stadejek W, Chiers K, Van Reeth K.Infectivity and transmissibility of an avian H3N1 influenza virus in pigs[J].Vet Res,2023,54(1): 4. [5] Yamada S, Suzuki Y, Suzuki T, et al.Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human‐type receptors[J].Nature,2006,444(7117):378-382. [6] Auewarakul P, Suptawiwat O, Kongchanagul A, et al.An avian influenza H5N1 virus that binds to a human‐type receptor[J].J Virol,2007,81(18):9950-9955. [7] Gu M, Li Q, Gao R, et al.The T160A hemagglutinin substitution affects not only receptor binding property but also transmissibility of H5N1 clade 2.3.4 avian influenza virus in guinea pigs[J]. Vet Res, 2017, 48(1): 7. [8] Peng W, Bouwman KM, Mcbride R, et al.Enhanced human‐type receptor binding by ferret‐transmissible H5N1 with a K193T mutation[J]. J Virol, 2018, 92(10):e02016-e2017. [9] Chen LM, Blixt O, Stevens J, et al.In vitro evolution of H5N1 avian influenza virus toward human‐type receptor specificity[J].Virology, 2012, 422(1): 105-113. [10] Xu Y, Peng R, Zhang W, et al.Avian‐to‐human receptor‐binding adaptation of avian H7N9 influenza virus hemagglutinin[J]. Cell Rep, 2019, 29(8): 2217-2228. [11] Peacock TP, Sealy JE, Harvey WT, et al.Genetic determinants of receptor‐binding preference and zoonotic potential of H9N2 avian influenza viruses[J]. J Virol, 2021, 95(5):e01651-20. [12] Chrzastek K, Lee DH, Gharaibeh S, et al.Characterization of H9N2 avian influenza viruses from the Middle East demonstrates heterogeneity at amino acid position 226 in the hemagglutinin and potential for transmission to mammals[J].Virology,2018,518:195-201. [13] Sang X, Wang A, Ding J, et al.Adaptation of H9N2 AIV in guinea pigs enables efficient transmission by direct contact and inefficient transmission by respiratory droplets[J].Sci Rep, 2015,5:15928. [14] Fan M, Liang B, Zhao Y, et al.Mutations of 127, 183 and 212 residues on the HA globular head affect the antigenicity, replication and pathogenicity of H9N2 avian influenza virus[J]. Transbound Emerg Dis, 2022,69(4):e659-e670. [15] Keleta L, Ibricevic A, Bovin NV, et al.Experimental evolution of human influenza virus H3 hemagglutinin in the mouse lung identifies adaptive regions in HA1 and HA2[J].J Virol,2008, 82(23): 11599-11608. [16] Sealy JE, Howard WA, Molesti E, et al.Amino acid substitutions in the H5N1 avian influenza haemagglutinin alter pH of fusion and receptor binding to promote a highly pathogenic phenotype in chickens[J].J Gen Virol, 2021, 102(11):001672. [17] Xu N, Wu Y, Chen Y, et al.Emerging of H5N6 subtype influenza virus with 129-Glycosylation site on hemagglutinin in poultry in China acquires immune pressure adaption[J].Microbiol Spectr,2022,10(3): e0253721. [18] Le Sage V, Kormuth KA, Nturibi E, et al.Cell‐culture adaptation of H3N2 influenza virus impacts acid stability and reduces airborne transmission in ferret model[J].Viruses,2021, 13(5):719. [19] Russier M, Yang G, Rehg JE, et al.Molecular requirements for a pandemic influenza virus: An acid‐stable hemagglutinin protein[J].Proc Natl Acad Sci USA,2016,113(6):1636-1641. [20] Wessels U, Abdelwhab EM, Veits J, et al.A dual motif in the hemagglutinin of H5N1 Goose/Guangdong‐Like highly pathogenic avian influenza virus strains is conserved from their early evolution and increases both membrane Fusion pH and virulence[J].J Virol,2018, 92(17):e00778-18. [21] Subbarao EK, London W, Murphy BR.A single amino acid in the PB2 gene of influenza A virus is a determinant of host range[J]. J Virol, 1993, 67(4): 1761-1764. [22] Hatta M, Gao P, Halfmann P, et al.Molecular basis for high virulence of Hong Kong H5N1 influenza A viruses[J].Science, 2001,293(5536):1840-1842. [23] Mok CK, Lee HH, Lestra M, et al.Amino acid substitutions in polymerase basic protein 2 gene contribute to the pathogenicity of the novel A/H7N9 influenza virus in mammalian hosts[J].J Virol,2014,88(6):3568-3576. [24] Wang C, Lee HH, Yang ZF, et al.PB2-Q591K mutation determines the pathogenicity of avian H9N2 influenza viruses for mammalian species[J].PLoS One,2016,11(9): e0162163. [25] Li W, Lee HHY, Li RF, et al.The PB2 mutation with lysine at 627 enhances the pathogenicity of avian influenza (H7N9) virus which belongs to a non‐zoonotic lineage[J].Sci Rep,2017, 7(1): 2352. [26] 裴宇茹. 2018—2020年华东地区H9N2亚型禽流感病毒流行病学和PB2蛋白适应性变异对病毒复制影响[D].扬州:扬州大学,2021. [27] Gao W, Zu Z, Liu J, et al.Prevailing I292V PB2 mutation in avian influenza H9N2 virus increases viral polymerase function and attenuates IFN-β induction in human cells[J].J Gen Virol,2019,100(9):1273-1281. [28] Zhang J, Wang X, Ding S, et al.Key amino acid position 272 in neuraminidase determines the replication and virulence of H5N6 avian influenza virus in mammals[J].iScience,2022,25(12): 105693. |