[1] 邹悦,萧闵,孟宇豪,等. 基于p38 MAPK/NF-κB信号通路探讨淫羊藿多糖对运动性疲劳小鼠的影响及作用机制[J]. 中国实验方剂学杂志,2024,30(10):20-28. [2] 李继东,杨波. 低聚糖运动饮料对游泳运动员抗疲劳作用的研究[J]. 食品研究与开发,2024,45(3):228-230. [3] 吴宏江,张冬梅. 氨基酸复合制剂对高强度间歇运动后中枢疲劳的影响[J]. 中国组织工程研究,2018,22(20):3150-3154. [4] 秦启阳,陈斌,郭黎,等. 咖啡因对耐力运动员运动表现的影响:效果及机制[J]. 体育科研,2024,45(1):93-103. [5] 樊腾飞. 黄芪抗运动性疲劳作用的实验研究及其作用机理的探讨[J]. 曲阜师范大学学报(自然科学版),2023,49(4):120-124. [6] 庞贤妹,耿雪,陈楚杰,等. 四君子汤调控AMPK-SIRT1蛋白改善运动性疲劳小鼠学习记忆的机制研究[J]. 新中医,2024,56(11):23-28. [7] 王福粮,崔运坤,贾燕,等. 我国《全民健身计划》变迁与发展探究[J]. 武术研究,2023,8(3):119-122. [8] 张亚琴. 鬼针草醇提物抗急性疲劳的作用研究[D]. 昆明:云南师范大学,2023. [9] Niemelä M, Kangastupa P, Niemelä O, et al.Acute changes in inflammatory biomarker levels in recreational runners participating in a marathon or half-marathon[J]. Sports Med Open, 2016, 2(1): 21. [10] 周勇,杨珏. 花椒叶多糖对小鼠运动疲劳作用及其机制研究[J]. 中国食品添加剂,2023,34(7):234-239. [11] 林巧婷,钟叶蓓,杨尚林,等. 背部推法对慢性疲劳综合征大鼠运动行为、氧化应激和炎症反应的影响[J]. 中国运动医学杂志,2024,43(1):39-46. [12] 张介宾,类经[M]. 北京:中国中医药出版社,1997:207 [13] Yin C, Qin R, Ma ZW, et al.Oxaloacetic acid induces muscle energy substrate depletion and fatigue by JNK-mediated mitochondrial uncoupling[J]. Faseb J, 2024, 38(2): e23373. [14] Domínguez R, Maté-Muñoz JL, Cuenca E, et al.Effects of beetroot juice supplementation on intermittent high-intensity exercise efforts[J]. J Int Soc Sports Nutr, 2018, 15: 2. [15] Pellicer-Caller R, Vaquero-Cristóbal R, González-Gálvez N, et al.Influence of exogenous factors related to nutritional and hydration strategies and environmental conditions on fatigue in endurance sports: A systematic review with meta-analysis[J]. Nutrients, 2023, 15(12): 2700. [16] Kataoka R, Vasenina E, Hammert WB, et al.Is there evidence for the suggestion that fatigue accumulates following resistance exercise?[J]. Sports Med, 2022, 52(1): 25-36. [17] Zhang ZT, Du XM, Ma XJ, et al.Activation of the NLRP3 inflammasome in lipopolysaccharide-induced mouse fatigue and its relevance to chronic fatigue syndrome[J]. J Neuroinflammation, 2016, 13(1): 71. [18] 于梦淇,黄淑贞,刘雨菲,等. 灵芝孢子油缓解小鼠体力疲劳的作用及其机制研究[J]. 食品与发酵工业,2024,50(7):39-45. [19] 魏芬芬,王文娟,张波. 枸杞多糖缓解小鼠体力疲劳研究[J]. 食品研究与开发,2020,41(6):48-52. [20] Chen H, Ma X, Cao L, et al.A multi-ingredient formula ameliorates exercise-induced fatigue by changing metabolic pathways and increasing antioxidant capacity in mice[J]. Foods, 2021, 10(12): 3120. [21] De Marchi T, Ferlito JV, Ferlito MV, et al.Can photobiomodulation therapy (PBMT) minimize exercise-induced oxidative stress? A systematic review and meta-analysis[J]. Antioxidants (Basel), 2022, 11(9): 1671. [22] Liu G, Yang X, Zhang J, et al.Synthesis, stability and anti-fatigue activity of selenium nanoparticles stabilized by Lycium barbarum polysaccharides[J]. Int J Biol Macromol, 2021, 179: 418-428. [23] Sunil C, Zheng X, Yang Z, et al.Antifatigue effects of Hechong (Tylorrhynchus heterochaetus) through modulation of Nrf2/ARE- mediated antioxidant signaling pathway[J]. Food Chem Toxicol, 2021, 157: 112589. [24] 钟伟新,王凤岩,王萍. 复方灵芝制剂对小鼠抗疲劳作用的研究[J]. 华南预防医学,2012,38(6):61-63. [25] 何静静,杨晓宽. 板栗果酒多糖的提取纯化及其抗疲劳活性[J/OL]. 食品工业科技:1-19[2024-05-10].https://doi.org/10.13386/j.issn1002-0306.2024020031. [26] 魏柯健,俞静静,苏洁,等. 探讨保元汤加减方通过AMPK/SIRT1/PGC-1α通路对小鼠的抗疲劳作用[J]. 北京中医药大学学报,2023,46(12):1716-1727. [27] Chou CH, Barton ER.Phosphorylation of AMPKα at Ser485/491 is dependent on muscle contraction and not muscle-specific IGF-I overexpression[J]. Int J Mol Sci, 2023, 24(15): 11950. |