华南预防医学 ›› 2025, Vol. 51 ›› Issue (10): 1087-1093.doi: 10.12183/j.scjpm.2025.1087

• 论著 • 上一篇    下一篇

基于精细化分段的肺癌患者诊疗延迟现状及多维度因素分析

吕全喜1, 吕志豪2, 孙源源1   

  1. 1.邯郸市第一医院,河北 邯郸 056002;
    2.河北医科大学第三医院
  • 收稿日期:2025-03-15 出版日期:2025-10-20 发布日期:2025-11-14
  • 作者简介:吕全喜(1973—),男,硕士研究生,副主任医师,研究方向为胸外临床疾病
  • 基金资助:
    河北省医学科学研究课题计划项目(20240437)

Analysis of the current status and multidimensional factors of diagnostic and treatment delays in lung cancer patients based on fine-grained segmentation

LYU Quanxi1, LYU Zhihao2, SUN Yuanyuan1   

  1. 1. Handan First Hospital, Handan, Hebei 056002, China;
    2. Third Hospital of Hebei Medical University
  • Received:2025-03-15 Online:2025-10-20 Published:2025-11-14

摘要: 目的 探讨基于精细化分段的肺癌患者诊疗延迟现状,并分析多维度影响因素。方法 采用回顾性研究,选择2024年1月至2024年12月在邯郸市第一医院就诊的肺癌患者临床资料,收集患者首诊延迟时间、诊断延迟时间、治疗启动延迟时间及总延迟时间,采用线性回归分析各时间延迟的影响因素。结果 366例肺癌患者首诊延迟时间60.00(44.00,74.00)d;诊断延迟时间34.00(24.00,46.25)d;治疗启动延迟时间20.00(14.00,26.00)d;总延迟时间114.00(93.75,133.25)d。经线性回归分析,年龄(≥60岁β′=0.145)、医保类型(城镇职工β′=-0.236)、确诊时临床分期(I~II期β′=0.136)是首诊延迟时间的影响因素(均P<0.05)。医保类型(城镇职工β=-0.348,自费β=-0.292)、确诊时临床分期(I~II期β′=0.136)、首诊医疗机构级别(三级医院β′=-2.267)、经历跨院就医才获得确诊(β′=0.157)是诊断延迟的影响因素(均P<0.05)。确诊时临床分期(I~II期β′=1.137)、经历跨院就医才获得确诊(β′=0.151)、等待基因检测(β′=0.158)是治疗启动延迟的影响因素(均P<0.05)。年龄(≥60岁β′=0.143)、医保类型(城镇职工β′=-0.229,自费β′=0.123)、确诊时临床分期(I~II期β′=0.136)、首诊医疗机构级别(二级医院β′=-0.234,三级医院β′=-0.329)、经历跨院就医才获得确诊(β′=0.146)、等待基因检测(β′=0.136)是总延迟的影响因素(均P<0.05)。结论 肺癌诊疗延迟时间为首诊延迟>诊断延迟>治疗启动延迟,可根据各阶段延迟的影响因素展开针对性干预,缩短肺癌诊疗延迟时间。

关键词: 肺癌, 诊疗延迟, 精细化分段, 疾病管理, 影响因素

Abstract: Objective To investigate the current status of diagnostic and treatment delays among lung cancer patients utilizing a fine-grained segmentation approach and to analyze the multidimensional factors influencing these delays. Methods A retrospective study was conducted on the clinical data of lung cancer patients admitted to the First Hospital of Handan City from January 2024 to December 2024. Data on patient-related delay, diagnostic delay, treatment initiation delay, and total delay were collected. Linear regression analysis was employed to identify the determinants of each delay interval. Results Among the 366 lung cancer patients included, the median patient-related delay was 60.00 (44.00, 74.00) days;the median diagnostic delay was 34.00 (24.00, 46.25) days;the median treatment initiation delay was 20.00 (14.00, 26.00) days;and the median total delay was 114.00 (93.75, 133.25) days. Linear regression analysis revealed that age (≥60 years, β′=0.145), health insurance type (urban employee-based, β′=-0.236), and clinical stage at diagnosis (Stage I-II, β′=0.136) were significant factors influencing patient-related delay (P<0.05). Determinants of diagnostic delay included health insurance type (urban employee-based, β′=-0.348;self-funded, β′=-0.292), clinical stage at diagnosis (Stage I-II, β′=0.136), level of the initial consultation hospital (tertiary hospital, β′=-2.267), and experiencing inter-hospital transfers to obtain a definitive diagnosis (β′=0.157) (P<0.05). Factors associated with treatment initiation delay were clinical stage at diagnosis (Stage I-II, β′=1.137), experiencing inter-hospital transfers for diagnosis (β′=0.151), and awaiting genetic testing results (β′=0.158). The significant predictors for total delay were age (≥60 years, β′=0.143), health insurance type (urban employee-based, β′=-0.229;self-funded, β′=0.123), clinical stage at diagnosis (Stage I-II, β′=0.136), level of the initial consultation hospital (secondary hospital, β′=-0.234;tertiary hospital, β′=-0.329), experiencing inter-hospital transfers for diagnosis (β′=0.146), and awaiting genetic testing results (β′=0.136). Conclusions The delays in the diagnosis and treatment of lung cancer, in descending order of duration, were patient-related delay, diagnostic delay, and treatment initiation delay. Targeted interventions based on the influencing factors identified at each stage may be implemented to shorten the overall diagnostic and treatment timeline for lung cancer.

Key words: Lung cancer, Diagnostic and treatment delays, Refined segmentation, Disease management, Influencing factors

中图分类号: 

  • R73-31