华南预防医学 ›› 2014, Vol. 40 ›› Issue (6): 504-511.doi: 10.13217/j.scjpm.2014.0504

• 论著 • 上一篇    下一篇

极端低温对呼吸系统疾病住院人数影响的时间序列分析

罗焕金1,2,曾四清2,胡梦珏3,罗圆3,马文军1,3   

  1.  1.中山大学公共卫生学院,广东 广州510080;2.广东省疾病预防控制中心;3.广东省疾病预防控制中心广东省公共卫生研究院
  • 出版日期:2014-12-20 发布日期:2015-03-27
  • 通讯作者: 马文军 E-mail:mwj68@vip.tom.com
  • 作者简介:罗焕金(1983—),男,在读硕士研究生,医师,主要从事环境与健康影响研究

Effect of extreme low temperature on respiratory hospital admissions: a time-series study

LUO Huan-jin, ZENG Si-qing, HU Meng-jue, LUO Yuan, MA Wen-jun   

  1. 1School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; 2Guangdong Provincial Center for Disease Control and Prevention; 3Guangdong Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention
  • Online:2014-12-20 Published:2015-03-27

摘要: 目的 研究极端低温对人群呼吸系统疾病发病住院的影响,以及不同地区和人群对该影响的效应修饰作用。方法 收集广东省经济发达地区广州市番禺区和欠发达地区梅州兴宁市2006—2011年的呼吸系统疾病住院病例数的时间序列资料和相应的气象资料,运用分布滞后非线性模型分析2个地区极端气温(低于日均气温分布的第5百分位)与呼吸系统疾病住院人数的关系,并按不同性别和年龄进行分层分析。结果 2006—2011年番禺地区的日均气温的均值为22.7℃,共有24 216人次因呼吸系统疾病而在番禺区中心医院住院,平均每天有11.1人次。兴宁地区日均气温的均值为21.9℃,共有19 934人次在兴宁市人民医院住院,平均每天有9.1人次。日均气温与呼吸系统疾病住院人数间呈非线性关系,低温对2个地区的呼吸系统疾病发病住院影响有明显的滞后,兴宁在6.4℃、滞后13 d时RR值达到最大,为1.04(95% CI:1.02~1.06);番禺在9.9℃、滞后10 d时RR值最大,为1.03(95% CI:1.02~1.04)。滞后25 d内的累计效应中,番禺区在研究期气温分布的第5%(10.9℃)、10%(14.3℃)和25%(18.2℃)处对应的RR值分别为1.48(95% CI:1.13~1.94)、1.45(95% CI:1.12~1.82)和1.29(95% CI:1.10~1.51);兴宁市在研究期气温分布的第5%(9.8℃)、10%(11.7℃)和25%(17.1℃)处对应的RR值则分别为1.61(95% CI:1.17~2.21)、1.45(95% CI:1.08~1.96)和1.11(95% CI:0.94~1.35)。极端低温对各人群影响效应(RR值)随滞后日的变化呈现比较一致的趋势,在暴露后2~4 d才出现效应,之后效应慢慢增大,达到一定高峰后慢慢回落,为倒“U”型的分布形状。经济欠发达地区兴宁市的老年人群受极端低温的影响最大,其RR值达1.86(95% CI:1.04~3.31)。结论 极端低温对人群呼吸系统疾病发病住院有显著影响,其中对经济欠发达地区的老年人群影响更加明显。

Abstract: Objective To explore the effects of extreme low temperatures on respiratory hospital admissions in Guangdong Province and effect modification of different regions and age groups. Methods Based on the time-series data of respiratory hospital admissions and meteorological variables in Panyu District (developed region) and Xingning County (underdeveloped region) of Guangdong Province during 2006-2011, the relationship between extreme low temperatures (below the 5th percentile of daily average temperature distribution) and respiratory hospital admissions was analyzed with distributed lag non-linear model, and stratified analysis by sex and age group was also conducted.Results The mean of daily average temperature was 22.7 ℃ in Panyu, and the total respiratory hospital admissions were 24 216 in Panyu Central Hospital with a daily average of 11.1 during 2006-2011. The mean of daily average temperature was 21.9 ℃ in Xingning, and the total respiratory hospital admissions were 19 934 in Xingning People’s Hospital with a daily average of 9.1 in the same period. The effect of daily average temperature on respiratory hospital admissions was non-linear, and low temperatures had significant lagged effects for the 2 regions, with the RRs reaching the maximum of 1.04 (95% CI:1.02-1.06) at 6.4 ℃ on lagged 13 days for Xingning and 1.03 (95% CI:1.02-1.04) at 9.9 ℃ on lagged 10 days for Panyu, respectively. For the cumulative lagged effects during the 25 lagged days, the RR s were 1.48 (95% CI:1.13-1.94), 1.45 (95% CI:1.12-1.82) and 1.29 (95% CI:1.10-1.51) respectively at the 5th percentile (10.9 ℃), 10th percentile (14.3 ℃) and 25th percentile (18.2 ℃) of daily average temperature distribution for Panyu, and were 1.61 (95% CI:1.17-2.21), 1.45(95% CI:1.08-1.96)and 1.11 (95% CI:0.94-1.35) for Xingning. The change of effects (RRs) associated with extreme low temperatures along the lagged days showed a similar trend of converse “U” shape for various sub-groups, with the effects emerging on 2-4 days after exposure, growing up later, and decreasing after reaching the peak. The effect of extreme low temperatures had the greatest impact on ≥65 age group in Xingning with an RR of 1.86(95% CI:1.04-3.31). Conclusion Extreme low temperatures can significantly impact on respiratory hospital admissions for the elderly, especially in underdeveloped regions.

中图分类号: 

  • R122.2+1