华南预防医学 ›› 2021, Vol. 47 ›› Issue (1): 10-14.doi: 10.12183/j.scjpm.2021.0010

• 论著 • 上一篇    下一篇

三种预测模型对南京市水痘发病预测的应用与比较

许阳婷   

  1. 南京市疾病预防控制中心,江苏 南京 210003
  • 收稿日期:2019-12-30 出版日期:2021-01-20 发布日期:2021-02-07
  • 作者简介:许阳婷(1965—),女,大学本科,主任医师,研究方向:疾病控制
  • 基金资助:
    “十三五”南京市医学科技发展重大项目(ZDX16020); 南京市科技发展计划项目(201803033); 南京市卫生科技发展项目(YKK18175)

Application and comparison of three models for the prediction of varicella incidence in Nanjing

XU Yang-ting   

  1. Nanjing Center for Disease Control and Prevention, Nanjing 210003, China
  • Received:2019-12-30 Online:2021-01-20 Published:2021-02-07

摘要: 目的 构建南京市水痘发病预测的最优模型,为水痘防控给予科学指导。方法 以2014—2018年南京市逐月水痘发病率分别建立Holt-Winters加法模型、Holt-Winters乘积模型和自回归移动平均法(ARIMA)模型。对模型进行参数检验,计算预测值与实际值相对误差,选择最优模型预测南京市2019年的水痘发病率。结果 基于Ljung-BOX检验水准,剔除Holt-Winters加法模型,选择Holt-Winters乘积模型和ARIMA模型为水痘预测模型。Holt-Winters乘积模型和ARIMA模型的贝叶斯信息规则(BIC)分别为1.24、1.81,平均绝对百分比误差(MAPE)分别为14.24%、21.86%;R2均为0.97,预测值与实际值平均相对误差分别为11.90%、15.76%。结论 Holt-Winters乘积模型在拟合与预测效果上优于ARIMA模型,是水痘短期内预测精度较高的模型。

关键词: Varicella, Holt-Winters model, ARIMA, Forecast

Abstract: Objective Constructing an optimal model for varicella prediction in Nanjing City to provide scientific guidance for the prevention and control of varicella. Methods Constructed Holt-Winters addition model, Holt-Winters product model and autoregressive integrated moving average (ARIMA) model based on the monthly varicella incidence rate in Nanjing from 2014 to 2018. By testing the parameters of the models and calculating the relative errors between predicted and actual values, selected the optimal model to predict varicella incidence in Nanjing in 2019. Results Based on Ljung-BOX test level, rejecting the Holt-Winters addition model and selecting the Holt-Winters product model and ARIMA model as the varicella prediction model. The bayesian information rules (BIC) of Holt-winters product model and ARIMA model was 1.24 and 1.81, respectively; the mean absolute percentage error (MAPE) was 14.24% and 21.86% respectively; the R2 was 0.97 and 0.97, respectively; the average relative error between the predicted value and the actual value was 11.90% and 15.76%, respectively. Conclusion Holt winters product model is superior to ARIMA model in fitting and forecasting effect, and it is a high accuracy model for varicella prediction in the short term.

Key words: Varicella, Holt-Winters model, ARIMA, Forecast

中图分类号: 

  • R195.1