华南预防医学 ›› 2023, Vol. 49 ›› Issue (12): 1498-1503.doi: 10.12183/j.scjpm.2023.1498

• 论著 • 上一篇    下一篇

基于卷积神经网络的肠道寄生虫虫卵识别模型研究

殷李华1,2, 胡建雄1, 方悦怡3, 容祖华4, 黄栩滨4, 何冠豪1, 江芷莹1, 肖建鹏4, 刘涛1, 马文军1   

  1. 1.暨南大学基础医学与公共卫生学院公共卫生与预防医学系,广东 广州 510632;
    2.广州城建职业学院信息工程学院;
    3.广东省疾病预防控制中心寄生虫病预防控制所;
    4.广东省疾病预防控制中心 广东省公共卫生研究院
  • 收稿日期:2023-10-20 出版日期:2023-12-20 发布日期:2024-02-05
  • 通讯作者: 马文军,E-mail:mawj@gdiph.org.cn
  • 作者简介:殷李华(1994—),男,硕士研究生,研究方向:图像识别技术;胡建雄(1993—),男,在读博士研究生,研究方向:传染病防控; 殷李华和胡建雄为共同第一作者
  • 基金资助:
    广东省自然科学基金项目(2021A1515012578)

Research on recognition model of intestinal parasite eggs based on convolutional neural network

YIN Lihua1,2, HU Jianxiong1, FANG Yueyi3, RONG Zuhua4, HUANG Xubin4, HE Guanhao1, JIANG Zhiying1, XIAO Jianpeng4, LIU Tao1, MA Wenjun1   

  1. 1. Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China;
    2. School of Information Engineering, Guangzhou City Construction College;
    3. Parasitic Disease Prevention and Control Institute, Guangdong Provincial Center for Disease Control and Prevention;
    4. Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention
  • Received:2023-10-20 Online:2023-12-20 Published:2024-02-05

摘要: 目的 构建肠道寄生虫卵的粪检显微图像数据集,建立一个深度学习模型,为肠道寄生虫疾病辅助诊断提供技术支撑。方法 利用显微镜和数码相机采集12种肠道寄生虫虫卵显微图像,经预处理后对虫卵的类别和位置进行标注,形成粪检显微图像数据集。以掩膜区域卷积神经网络深度学习模型作为框架,对标定框回归、分类、掩膜进行训练,并评估其性能。结果 构建的图像数据集共6 299张图片,涵盖了10 944个虫卵图像。经测试建立的深度学习模型总体识别准确率为90.20%,12种虫卵的准确率为58.65%(曼氏迭宫绦虫卵)~100.00%(蛲虫卵)。结论 构建肠道寄生虫卵的显微图像数据集和利用卷积神经网络建立肠道寄生虫卵显微图像的识别模型可为寄生虫相关疾病的辅助诊断提供技术支撑。

关键词: 图像数据集, 肠道寄生虫, 肠道寄生虫卵, 深度学习

Abstract: Objective To construct a fecal microscopy image dataset of intestinal parasite eggs and establish a corresponding deep learning image recognition model, so as to provide technical support for the auxiliary diagnosis of intestinal parasitic diseases. Methods Microscopic images of 12 intestinal parasite eggs were collected using a microscope and a digital camera, pre-processed and labelled with the categories and locations of the eggs to form an image dataset. A masked region convolutional neural network deep learning model was used as a framework to train the bounding box regression, classification, and mask generation, and its performance was evaluated. Results The fecal microscopy image dataset was constructed with a total of 6 299 images, including 10 944 egg images. After testing, the deep learning model achieved an overall recognition accuracy of 90.20%. The recognition accuracy for the 12 types of eggs ranged from 58.65% (Spirometra mansoni egg) to 100.00% (Pinworm egg). Conclusion Constructing a microscopy image dataset of intestinal parasite eggs and establishing an image recognition model using convolutional neural networks provide technical support for the auxiliary diagnosis of parasitic diseases.

Key words: Image dataset, Intestinal parasites, Intestinal parasite eggs, Deep learning

中图分类号: 

  • R183.9