华南预防医学 ›› 2025, Vol. 51 ›› Issue (9): 963-967.doi: 10.12183/j.scjpm.2025.0963

• 论著 • 上一篇    下一篇

2019—2023年江西省赣州市流感病例时空聚集性分析

蔡清风, 吴春英, 黄菊英, 李剑   

  1. 赣州市疾病预防控制中心, 江西赣州 341000
  • 收稿日期:2024-11-26 出版日期:2025-09-20 发布日期:2025-10-27
  • 通讯作者: 李剑,E-mail:605578002@qq.com
  • 作者简介:蔡清风(1993—),女,大学本科,主管医师,主要从事急性传染病防控工作
  • 基金资助:
    江西省卫生健康委科技计划(202312002)

Spatiotemporal cluster analysis of influenza cases in Ganzhou, Jiangxi Province, 2019-2023

CAI Qingfeng, WU Chunying, HUANG Juying, LI Jian   

  1. Ganzhou Center for Disease Control and Prevention, Ganzhou, Jiangxi 341000, China
  • Received:2024-11-26 Online:2025-09-20 Published:2025-10-27

摘要: 目的 探索2019— 2023年江西省赣州市流感发病的时空分布、演变特征及高发区域,为制定精准防控措施提供依据。方法 收集赣州市2019— 2023年流感病例数据,应用SaTScan 10.2.4软件进行时空扫描分析,应用ArcGIS 10.8软件进行全局和局部空间自相关分析。结果 2019— 2023年赣州市共报告流感病例92051例,年均报告发病率为207.76/10万,各年报告发病率分别为199.66/10万、104.34/10万、56.80/10万、233.47/10万、440.79/10万。全局空间自相关分析显示,2019— 2023年全局自相关Moran's I指数为0.268~0.716(均P< 0.001)。局部空间自相关结果显示,10个县(市、区)的62个乡、镇、街道为“高-高”聚集,主要分布于赣州主城区、南部、西南部、东北部等区域。时空分析显示,2019— 2023年赣州市流感发病存在时空聚集,一类聚集区位于赣州主城区、南部、东南部、西南部等区域,聚集时间为2023年3月1日至2023年4月30日,对数似然比(LLR)值为12 647.25,相对危险度(RR)值为7.95(P< 0.001)。结论 2019— 2023年赣州市流感病例整体上呈现时空聚集性,冬春季为防控重点时段,中心城区、南部、东南部、西南部、东北部为重点防控区域。

关键词: 流行性感冒, 空间自相关, 时空聚集性

Abstract: Objective To investigate the spatiotemporal distribution, evolutionary characteristics, and high-incidence areas of influenza cases in Ganzhou, Jiangxi Province, from 2019 to 2023, with the aim of informing the development of precise prevention and control measures. Methods Influenza case data reported in Ganzhou from 2019 to 2023 were collected and subjected to spatiotemporal scan analysis using SaTScan 10.2.4. Global and local spatial autocorrelation analyses were performed with ArcGIS 10.8. Results A total of 92 051 influenza cases were reported in Ganzhou between 2019 and 2023, corresponding to an average annual incidence rate of 207.76 per 100 000 population. The annual incidence rates for the respective years were 199.66, 104.34, 56.80, 233.47, and 440.79 per 100 000. Global spatial autocorrelation analysis revealed significant spatial clustering, with Moran's I indices ranging from 0.268 to 0.716 (all P<0.001). Local spatial autocorrelation analysis identified “high-high” clusters in 62 townships, towns, and subdistricts across 10 counties (cities, districts), primarily concentrated in the central urban area, southern, southwestern, and northeastern regions of Ganzhou. Spatiotemporal analysis demonstrated pronounced clustering of influenza incidence during the study period, with the most significant cluster located in the central urban, southern, southeastern, and southwestern regions. The clustering period extended from March 1 to April 30, 2023, with a log likelihood ratio (LLR) of 12 647.25 and a relative risk (RR) of 7.95 (P<0.001). Conclusions Influenza cases in Ganzhou from 2019 to 2023 exhibited marked spatiotemporal clustering. Winter and spring emerged as critical periods for influenza prevention and control, with the central urban, southern, southeastern, southwestern, and northeastern regions identified as priority areas for targeted interventions.

Key words: Influenza, Spatial autocorrelation, Spatiotemporal clustering

中图分类号: 

  • R183.3