华南预防医学 ›› 2023, Vol. 49 ›› Issue (10): 1273-1279.doi: 10.12183/j.scjpm.2023.1273

• 艾滋病防控 • 上一篇    下一篇

三种不同算法模型对广州市青年学生艾滋病暴露后预防使用意愿影响因素研究

刘珺1, 林鹏2, 徐慧芳2, 李艳1, 付笑冰1, 姚芷潞1, 谢仕兰1, 何思敏1, 黎健荣1, 潘丝媛1, 杨放1   

  1. 1.广东省疾病预防控制中心,广东 广州 511430;
    2.广东省性病艾滋病防治协会
  • 收稿日期:2023-08-13 出版日期:2023-10-20 发布日期:2023-11-28
  • 通讯作者: 杨放,E-mail:253789035@qq.com
  • 作者简介:刘珺(1984—),女,硕士研究生,主管医师,从事流行病学与卫生统计学研究工作

Study on the influence factors of willingness to take post-exposure prophylaxis among young students in Guangzhou employing three different algorithm models

LIU Jun1, LIN Peng2, XU Huifang2, LI Yan1, FU Xiaobing1, YAO Zhilu1, XIE Shilan1, HE Simin1, LI Jianrong1, PAN Siyuan1, YANG Fang1   

  1. 1. Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China;
    2. Guangdong Association of STD & AIDS Prevention and Control
  • Received:2023-08-13 Online:2023-10-20 Published:2023-11-28

摘要: 目的 分析广州市青年学生艾滋病暴露后预防(PEP)使用意愿及影响因素。方法 采用横断面研究对广州市5所不同类型高校学生于2021年9—11月开展艾滋病PEP使用意愿的调查。以PEP使用意愿作为预测变量分别构建logistic回归模型、决策树算法模型和随机森林算法模型,ROSE算法用于处理数据不平衡问题。通过AUC(ROC曲线下面积)和混淆矩阵对3种模型预测性能进行评价。结果 共回收有效问卷7 346份。67.63%调查对象知道PEP;6 794例(92.49%)表示愿意使用,552例(7.51%)表示不愿意。综合3种模型结果,PEP的使用意愿受个体因素(性别、年龄)、学校因素(学校类型、专业)、HIV相关因素(HIV知识知晓情况、检测知识、态度、接受HIV教育学段、性行为)、经济条件等因素影响。logistic回归、决策树和随机森林模型预测性能AUC(95%CI)分别为0.77(0.75~0.79)、0.74(0.72~0.76)和0.90(0.89~0.92)。随机森林算法模型的各指标均优于logistic回归模型和决策树模型。结论 广州市青年学生对PEP的知晓仍有待进一步加强,PEP使用意愿主要受PEP知晓情况、个体因素、学校因素、HIV相关因素、经济条件等影响。随机森林算法模型对于在该人群中预测PEP的使用意愿具有适用性。

关键词: 艾滋病, 暴露后预防, 青年学生, 随机森林算法, 决策树

Abstract: Objective To analyze the willingness and influencing factors of taking post-exposure prophylaxis (PEP) among young students in Guangzhou. Methods A cross-sectional study was conducted among five universities in Guangzhou from September to November 2021. Using PEP as predictive variable, logistic regression model, Decision Tree algorithm model, as well as Random Forest algorithm model were constructed respectively. ROSE algorithm was used to handle data imbalance problems. Evaluated the predictive performance of the three models through AUC (area under ROC curve) and confusion matrix. Results A total of 7 346 valid questionnaires were collected, during which 67.63% reported ever heard of PEP, 92.49% reported willing to take PEP and 7.51% reported unwilling. Based on the results of the three models, the willingness to take PEP was affected by individual factors (gender, age), school factors (school type, major), HIV-related factors (HIV knowledge, testing knowledge, attitude of testing, acceptance period of HIV education, sexual behavior), and economic conditions etc. The predictive performance AUC (95% CI) for logistic regression, Decision Tree, and Random Forest model were 0.77 (0.75-0.79), 0.74(0.72-0.76), and 0.90 (0.89-0.92), respectively, among which Random Forest algorithm model showed the best prediction than the other two models. Conclusions Knowledge of PEP among young students in Guangzhou still need to be strengthened. The willingness to take PEP is mainly affected by PEP knowledge, individual factors, school factors, HIV-related factors, economic conditions and so on. The Random Forest algorithm model is suitable for predicting the willingness to take PEP among young students.

Key words: AIDS, Post-exposure prophylaxis, Young student, Random Forest algorithm, Decision Tree

中图分类号: 

  • R179